
An evaluation of alternate remote sensing
products for forest inventory, monitoring, and
mapping of Douglas-fir forests in western Oregon

M.A. Lefsky, W.B. Cohen, and T.A. Spies

Abstract: This research evaluates the utility of several remote sensing data types for the purpose of mapping forest
structure and related attributes at a regional scale. Several sensors were evaluated, including (i) single date Landsat
Thematic Mapper (TM); (ii ) multitemporal Landsat TM; (iii ) Airborne Data Acquisition and Registration (ADAR), a
sensor with high spatial resolution; (iv) Airborne Visible–Infrared Imaging Spectrometer (AVIRIS), a sensor with high
spectral resolution; and (v) Scanning Lidar Imager Of Canopies By Echo Recovery (SLICER), a lidar sensor that di-
rectly measures the height and canopy structure of forest vegetation. To evaluate the ability of each of the sensors to
predict stand structure attributes, we assembled a data set consisting of 92 field plots within the Willamette National
Forest in the vicinity of the H.J. Andrews Experimental Forest. Stand structure attributes included age, basal area,
aboveground biomass, mean diameter at breast height (DBH) of dominant and codominant stems, mean and standard
deviation of the DBH of all stems, maximum height, and the density of stems with DBH greater than 100 cm. SLICER
performed better than any other remote sensing system in its predictions of forest structural attributes. The performance
of the imaging sensors (TM, multitemporal TM, ADAR, and AVIRIS) varied with respect to which forest structural
variables were being examined. For one group of variables there was little difference in the ability of the these sensors
to predict forest structural attributes. For the remaining variables, we found that multitemporal TM was as or more ef-
fective than either ADAR or AVIRIS. These results indicate that multitemporal TM should be investigated as an alter-
native to either hyperspectral or hyperspatial sensors, which are more expensive and more difficult to process than
multitemporal Landsat TM.

Résumé: Ces travaux de recherche avaient pour objectif d’évaluer l’utilité de plusieurs types de données de télédétec-
tion à des fins de cartographie de la structure de la forêt et de ses attributs, à une échelle régionale. Plusieurs capteurs
ont été évalués, incluant (i) Landsat TM à date unique, (ii ) Landsat TM multi-temporel, (iii ) ADAR, un capteur à
haute résolution spatiale, (iv) AVIRIS, un capteur à haute résolution spectrale et (v) SLICER, un capteur lidar qui me-
sure directement la hauteur et la structure du couvert végétal de la forêt. Afin d’évaluer la capacité de chaque capteur à
prédire les attributs de la structure du peuplement, un ensemble de données, provenant de 92 parcelles établies dans la
Forêt nationale Willamette, à proximité de la Forêt expérimentale H.J. Andrews, ont été recueillies. Les attributs de la
structure du peuplement incluaient l’âge, la surface terrière, la biomasse épigée, le diamètre moyen à hauteur de poi-
trine (dhp) des tiges dominantes et codominantes, la moyenne et l’écart-type du dhp de toutes les tiges, la hauteur
maximale et la densité des tiges avec un dhp de plus de 100 cm. La performance du capteur SLICER s’est avérée su-
périeure à celle de tout autre système de télédétection pour prédire les attributs de la structure de la forêt. La perfor-
mance des capteurs d’images (TM, TM multi-temporel, ADAR et AVIRIS) variait, selon la variable de la structure de
la forêt examinée. Pour un groupe de variables, il y avait peu de différence dans la capacité de ces capteurs à prédire
les attributs de la structure de la forêt. Pour les variables restantes, le capteur TM multi-temporel s’est avéré aussi effi-
cace ou supérieur aux capteurs ADAR ou AVIRIS. Ces résultats indiquent que le capteur TM multi-temporel devrait
être considéré comme une alternative aux capteurs hyper-spectraux ou hyper-spatiaux, ces derniers étant plus dispen-
dieux et plus difficiles à opérer que le capteur Landsat TM multi-temporel.

[Traduit par la Rédaction] Lefsky et al. 87

Introduction

In the last decade, a number of remote sensing devices
with advanced capabilities have been introduced. These in-
clude hyperspectral and high spatial resolution (hyperspatial)

optical sensors, as well as radar and lidar sensors. There
have been only a few comparisons of the relative utility of
these new and established devices (e.g., Hyppa et al. 1998),
and as a result, both remote sensing specialists and users
have little information on which to make an informed selec-
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tion for their purposes. The goal of this study was to provide
such a comparison, for the specific purpose of remotely
measuring forest structural attributes at a regional scale, for
the Douglas-fir – western hemlock (Pseudotsuga menziesii
(Mirb.) Franco –Tsuga heterophylla(Raf.) Sarg.) forest of
the Pacific Northwest. Analysis methods were chosen to be
applicable at this regional scale. Structural attributes consid-
ered include age, basal area, aboveground biomass, mean di-
ameter at breast height (DBH) of dominant and codominant
stems, mean and standard deviation of the DBH of all stems,
maximum height, and the density of stems with DBH greater
than 100 cm.

The most frequently used remote sensing products con-
tinue to be from optical sensors that have moderate spatial
resolution (10–120 m). Examples include Landsat Thematic
Mapper (TM) and Multi-Spectral Sensor (MSS), and SPOT
High Resolution Visible (HRV), which are all multispectral
sensors with three to six broad spectral bands. In this work,
we have used Landsat TM imagery as an example of this
group. Optical sensors with two kinds of potential improve-
ments are starting to become generally available. The first
are hyperspectral sensors, which expand on the capabilities
of sensors like TM by replacing their few broad spectral
bands with many narrow spectral bands. The motivation for
this modification is the assumption that improved identifica-
tion of particular spectral features will lead to improved dis-
crimination of cover attributes. This assumption has been
supported for the problem of the identification of mineral
composition (Van der Meer 1994), and specific features of
canopy chemistry (Martin 1994; Zagolski et al. 1996), but
not for remote sensing of forest structural attributes. In this
work, hyperspectral sensors are represented by images from
the Airborne Visible–Infrared Imaging Spectrometer (AVIRIS)
airborne remote sensing system (Vane 1987).

The second kind of improvement in sensors is an increase
in spatial resolution. Increased spatial resolution allows
mapping of features that are smaller than the pixel size of
moderate resolution imagery. As a result, it should also al-
low improved characterization of surface features through
the separation of small-scale features, such as canopy fo-
liage, gaps, and shadows that would be mixed in a moderate
resolution pixel. More accurate discrimination of these fea-
tures could result in increased accuracy in forest description.
For instance, mature and old-growth conditions might be
more accurately discriminated using measurements of the
quantity and spatial organization of shadow in their canopies
(Cohen and Spies 1992). In this work, high spatial resolution
sensors are represented by images from the Airborne Data
Acquisition and Registration (ADAR) 5500 airborne sensor
(Benkelman et al. 1992).

In addition to the optical remote sensing sensors, two
other classes of sensor were considered for inclusion in this
study: radar and lidar sensors. Radar sensors are active sen-
sors that generate their own illumination, in this case micro-
wave radiation. The backscatter of the illumination measured
by the sensor is proportional to the amount and organization
of forest biomass. The backscatter of shorter wavelengths is
sensitive to the presence of smaller canopy components,
such as foliage and twigs. Larger wavelengths are sensitive
to the presence of larger components such as trunks. Despite
their early promise, it has been shown that radar sensors are

unable to discriminate between forests with more than
250 Mg·ha–1 of aboveground biomass (Dobson et al. 1992;
Kasischke et al. 1997). In this study, 85% of the study sites
(see below) exceed this threshold for aboveground biomass.
For this reason, radar sensors were not included in this
study.

A second active remote sensor, which we did evaluate in
this study, is lidar. The instrument we used, SLICER
(Scanning Lidar Imager Of Canopies By Echo Recovery) is
one of a new generation of lidar remote sensing systems that
augment traditional first-return laser altimetry with a wave-
form sampling capability (Aldred and Bonnor 1985; Blair et
al. 1994; Nilsson 1996). Laser altimeters measure the dis-
tance between the sensor and a target through the precise
measurement of the time between the emission of a pulse of
laser light from the sensor, and the time of detection of light
reflected from the target. With this newer class of instru-
ments, the power of the returning laser signal is digitized, re-
sulting in a waveform that records the vertical distribution of
the backscatter of laser illumination from all canopy ele-
ments (foliar and woody) and the ground reflection, at the
wavelength of the transmitted pulse (1064 nm, in the near-
infrared). Processing of these waveforms allows us to mea-
sure the total height and spatial organization of the canopy;
using these measurements we have been able to predict
aboveground biomass non-asymptotically to 1200 Mg·ha–1

in Douglas-fir – western hemlock forests (Lefsky et al.
1999b). Details of the technical aspects of SLICER can be
found in Blair et al. (1994) and Harding et al. (1994). Exam-
ples of work using SLICER to estimate forest structural at-
tributes can be found in Lefsky et al. (1999a, 1999b) and
Means et al. (1999).

Objectives
Our objective was to evaluate, as directly as possible, the

relative ability of five remote sensing data products to pre-
dict structural attributes of closed canopy coniferous forests,
using methods appropriate for regional-scale mapping. The
results of this evaluation will assist us in determining which
remote sensing products deserve additional consideration in
our ongoing work.

Methods

The evaluation of alternative remote sensing products cannot be
separated from the methods used to interpret them, and therefore,
no such evaluation can be said to be definitive. In developing this
particular comparison, methods were chosen to capture the unique
capabilities of each instrument, while remaining logistically practi-
cal for our main purpose: mapping forest structure attributes at a
regional scale. For the SLICER and TM images, techniques used in
previous work (i.e., Cohen and Spies 1992; Lefsky et al. 1999b)
were adopted without considerable modification. For the AVIRIS
image, we used principal component analysis to reduce the di-
mensionality of the original images so they could be analyzed in a
common statistical framework, as in Hyppa et al. (1998). For the
ADAR high spatial resolution images, our approach was to use ab-
solute difference filters at a range of resolutions to capture the
high-resolution texture of the images. In addition, we used propor-
tional reclassification to capture high resolution image cover infor-
mation. However, additional techniques could have been applied;
for instance, individual tree crown delineation (Gougeon 1995)
could have been applied to the ADAR imagery. We did not per-
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form such an analysis, because we did not consider it practical for
the regional-scale forest-mapping projects that we are concerned
with in this work.

Image processing steps

ADAR
Data were collected by the ADAR digital frame camera on Sep-

tember 9, 1992. One hundred and sixty eight individual ADAR
scenes were georeferenced to a 10-m SPOT image panchromatic
scene and mosaicked. The spatial resolution of the georeferenced
image was 1 m. The four spectral bands (blue, green, red, and near
infrared) from the ADAR sensor were used as one component of
the set of ADAR images to predict stand structural attributes. The
spectral bands were also processed using several additional tech-
niques. To create texture images the red spectral band was re-
sampled to resolutions of 2, 4, 8, and 16 m, and an absolute
difference filter (Cohen and Spies 1992) was applied. Cohen and
Spies (1992) found that the absolute difference filter was success-
ful in relating higher resolution texture information to coarser scale
image and forest structure properties. In addition, an existing clas-
sification of the ADAR mage was used to create a proportional re-
classification (Milne and Cohen 1999). The five classes (shadow,
old conifer, young conifer, hardwood, and open) of the existing im-
age were resampled from 1 to 25 m spatial resolution by extracting
all the 1-m cover data from within the boundaries of each 25-m
pixel. We then computed the proportion of each of the cover
classes in the 25-m pixel, resulting in a five-band image, where the
value for band one was equal to the proportion of class one in the
25-m pixel, and so on for all the classes. Again, the proportional
reclassification image was used to summarize the higher resolution
information content so that it could be analyzed at a coarser scale.
In the regression analyses we used a data set that included spectral,
textural, and proportional reclassification images.

Landsat TM
Six TM spatial mosaics were used for the regression analyses.

Each mosaic was created using multiple images collected on each
of six dates: March 19, May 6, June 7, July 25, and August 26,
1992; and August 29, 1993. An automated program was used to
find ground control points for registration (500+ points in two im-
ages), based on image-pattern cross correlation between the TM
images and a reference image (R.E. Kennedy and W.B. Cohen, in
preparation). Images were then transformed into the tasseled-cap
brightness, greenness, and wetness indices (Crist and Cicone 1984;
Cohen and Spies 1992). The spatial resolution of the georeferenced
images was 25 m. Separate analyses relating each date’s image to the
forest structural attributes were performed. An image of mean bright-
ness, greenness, and wetness indices was also evaluated. Finally, an
image consisting of a layer stack of all six dates (the multitemporal
data set) was analyzed. Only the results for the multitemporal and
best single month (June) models are presented here.

AVIRIS
AVIRIS images were collected on July 19, 1994. Two images

were mosaicked for the regression analyses. Images were corrected
for atmospheric effects using the ATREM software package (Gao
et al. 1993). Some of the 224 AVIRIS bands contain no usable im-
age data, mostly because of water vapor absorption; these bands
were removed. We applied a simple empirical model to remove
spatial gradients in brightness due to sun angle and view-angle ef-
fects (Kennedy et al. 1997). Images were then registered using the
automated GCP identification routine. The spatial resolution of the
georeferenced image was 25 m. To simplify analysis, principal
component analysis was performed to reduce the large number of
spectral bands to 20 principal components, following Hyppa et al.
(1998).

SLICER
Lidar waveforms were collected by the SLICER instrument in

September 1995. SLICER was configured to measure five wave-
forms cross track, with each waveform covering a footprint 10 m
in diameter. Georeferencing of laser footprints was performed by
combining laser ranging data with aircraft position, obtained via
kinematic global positioning system (GPS) methods, and laser
pointing, obtained with a laser-ring gyro inertial navigation system
mounted on the SLICER instrument (Blair et al. 1994). Waveforms
were processed using both the canopy height profile and the can-
opy volume profile algorithms, following the procedures in Lefsky
(1997) as modified in Lefsky et al. (1999a, 1999b). As in Lefsky et
al. (1999b) a variety of canopy indices were used as independent
variables: maximum and mean canopy height, canopy cover, vari-
ability of the upper canopy surface, and the total volumes of vege-
tation foliage and empty space within the canopy.

Field measurements of forest stand attributes
To evaluate the ability of each of the four sensors to predict

stand structure attributes, we assembled a data set consisting of 92
field plots within the Willamette National Forest in the vicinity of
the H.J. Andrews Experimental Forest, near Blue River, Oreg. Field
plots were taken from four data sets that are described in Cohen
and Spies (1992), Spies and Franklin (1991), Means et al. (1999),
and Acker et al. (1998). All plots were in closed-canopy, conifer-
ous forests. Younger forests in this area are dominated by Douglas-
fir, while older forests consist of a mix of Douglas-fir and western
hemlock. Field data sets had measurements of stem diameters and
species collected over either fixed or variably sized plots. Only a
portion of the data sets had measurements of stand age and tree
height. As a result, the number of plots available for analysis of
stand age and height variables is lower than for the other variables.
In addition, the spatial extent of the imagery differed, and as a re-
sult, the number of plots available to be compared with each image
was also variable. The number of plots available for each imagery
type and class of variables are presented in Table 1. Table 1 also
shows the average age, basal area, and maximum height for plots
by imagery type. Calculations of aboveground and foliage biomass
were made using equations from the U.S. Fish and Wildlife Ser-
vice Pacific Northwest Research Station reference stand data base
(S. Acker, personal communication). Mean DBH was calculated
twice; once for all stems on the plots and once for only the domi-
nant and codominant stems, abbreviated in tables as mean DBH
(ALL) and mean DBH (DCD). Mean, standard deviation, mini-
mum, and maximum values for each of the forest structural attrib-
utes are given in Table 2, along with the units of each
measurement.

Analytical techniques
We chose to predict forest structural attributes as continuous

variables, rather than as a set of discrete classes. Experience has
shown that this approach offers more flexibility, because the con-
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No. of observations Mean

Age
Diameter
indices Height Age

Basal
area

Maximum
height

ADAR 44 55 50 359 76.3 58
AVIRIS 62 84 75 300 68.1 55
TM 68 92 82 288 66.5 54
SLICER — 22 22 — 61.1 45

Note: Diameter indices refers to indices calculated from diameter
distribution data, such as basal area and biomass.

Table 1. Average number of plots and selected attribute values
by imagery and attribute type.
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tinuous predictions can be used directly or arranged into multiple
sets of classes that match varying purposes (Cohen et al. 2001).

To relate image characteristics to field data, automated methods
for extracting data from the images were developed. For the three
imaging sensors (TM, ADAR, AVIRIS), a square sampling window
was defined on the images, centered at the location of each plot,
and this window was used to extract and average pixel data from
the image. The sampling window was allowed to vary from be-
tween 25 and 475 m in diameter, in 50-m steps, and image data
were averaged separately for each sampling window size. The stan-
dard deviation of the pixel values in the window were also calcu-
lated and used in subsequent analyses. Stepwise multiple
regression was then used to relate image characteristics, summa-
rized using each of the sampling window sizes, and forest struc-
tural attributes. Of the models generated using the differing
sampling window sizes, the model with the maximum adjustedR2

value was selected to represent that combination of forest struc-
tural attribute and imagery type. Field data for the SLICER data set
was collected on 50 × 50 m field plots to coincide with 25 SLICER
waveforms, and no variable sampling window was used. As with
the other data, stepwise multiple regression was used to relate
SLICER measured canopy indices to forest structure attributes.
One key point in interpreting the results in this paper is that the re-
gression models were not interactively adjusted to optimize the re-
sults of any one sensor (i.e., by examining and possibly removing
outlier points); uniform methods were used throughout. As a result,
individual regressions may have some room for improvement, and
the results presented should be viewed in the context of the com-
parisons of sensors, not as an absolute upper limit to the perfor-
mance of any one sensor.

Two indices of the quality of each regression equation were
used: the coefficient of determination (R2) and the standard error of
the regression. Coefficients of determination indicate the percent-
age of total variance in the forest structure attributes that is ex-
plained by data from each image. AllR2 values reported are
adjusted for the effects of multiple independent variables. The
standard error of the regressions (SER) is calculated as the stan-
dard deviation of the regression’s residual values and is an estimate
of the distribution of error in the same units as the dependent vari-
able. To compare these values between imagery types, SERs have
been presented as a percentage of the mean predicted value for that
regression (SER%). As an example, if the value of the standard er-
ror of the regression is 20% of the mean predicted value, then 67%
of the data points (the percentage of points expected within 1 stan-
dard deviation of the mean) have an error less than 20% of the
mean value.

Results

For the sake of brevity, we only present results summariz-
ing the ability of each image type to predict each of the forest
structural attributes. Table 3 and Fig. 1 present the explana-

tory power of each imagery type in terms of the adjustedR2.
In every case a statistically significant (P < 0.05) relation-
ship was generated, with between 21 and 88% of variance
explained. Table 4 and Fig. 2 present the SER as a percent-
age of the mean predicted value. Regressions resulted in
SERs between 15% and 70% of the mean predicted value.
SERs are included for reference purposes; while adjustedR2

and SER are generally well correlated when all analyses are
considered, examination of scatterplots indicated thatR2 val-
ues were more sensitive to overall goodness of fit.

There was a clear trend in the capacity of each forest
structural attributes to be explained by the imagery (Ta-
ble 5). Forest structural variables were ranked with respect
to their relative ability to be predicted by all the imagery
types. This was done by ranking the average of theR2 values
associated with the prediction of each forest structural attrib-
ute from all imagery types. The best-predicted variables
were maximum height and the standard deviation and mean
of the DBH of dominant and codominant stems, which is
consistent with the findings of Cohen and Spies (1992). One
reason for the high ranks of these structural variables is that
they are all highly related to the size of the dominant and
codominant trees, which are the only trees observed by all
but one (SLICER) of the sensors. The next best predicted
variables (basal area, foliage biomass, and biomass) inte-
grate the size of all stems in the field plots, not just those of
the upper canopy, which may contribute to their lower rank-
ings. The prediction of stand age is complicated by the large
number of data points for which we had only categorical
data (>450 years, etc.) and the fact that age is not a directly
observable attribute. Mean DBH (of all stems) is again prob-
ably affected by its reliance on the diameters of all stems,
not just those that the sensors can see. The poor prediction
of the number of stems greater than 100 cm probably re-
flects its dependence on a specific aspect of the total diame-
ter distribution, rather than the moments of that distribution.

We also found clear differences among the sensors in their
ability to predict forest structure variables (Table 6). Sensors
were ranked with respect to their relative ability to predict
forest structural attributes. This was done by ranking the av-
erage of theR2 values associated with the prediction of all
forest structural attributes from each imagery type. SLICER
was overall the top-ranked sensor. Multitemporal TM was
the next highest ranked sensor, followed by ADAR and
AVIRIS, which were ranked just above the single TM image.

The range of predictability of variables varied by sensor
and structural variable. Some forest structure variables, such
as maximum height, differ little in the ability of the imaging
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Attribute Mean SD Minimum Maximum

Age (years) 288.0 186.4 9.0 700.0
Basal area (m2·ha–1) 70.0 29.4 0.3 146.2
Biomass (Mg·ha–1) 681.5 358.1 0.8 1533.0
Mean DBH (ALL) (cm) 34.4 13.2 2.0 66.6
SD of DBH (cm) 30.0 13.6 2.0 60.1
Mean DBH (DCD) (cm) 94.6 18.8 41.0 133.1
Foliage biomass (Mg·ha–1) 16.4 6.6 0.1 32.7
Maximum height (m) 54.5 10.3 6.4 106.0
Density of stems >100 cm DBH (no/ha) 36.4 18.1 0.0 82.0

Table 2. Mean, SD, minimum, and maximum values for each of the forest structural attributes in sample plots.
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sensors (ADAR, AVIRIS, single-date TM, and multi-
temporal TM) to predict them (Fig. 1). In contrast, a variable
like basal area shows much greater sensitivity to the sensor
being used to predict it. These patterns can be summarized
into three classes (Table 7) based on performance of the
three imaging sensors. We excluded SLICER, because it had
much largerR2 values than the other sensors and because it
is likely that only the imaging sensors will be most useful
for regional mapping studies in the short term, because of
the higher cost and lower availability of lidar devices. The
first class of variables is characterized by relatively little dif-
ference in the ability of the four imaging remote sensing
data sets to predict the variables (e.g., maximum height in
Fig. 3). The second class is characterized by a large increase
in the ability of multitemporal TM to predict these variables,
relative to the three other imaging sensors, and a smaller in-

crease in the ability of ADAR and AVIRIS to predict the
variables relative to the single-date TM scene (e.g., basal
area in Fig. 3). The third class of variables is characterized
by a moderate increase in the ability of multitemporal TM,
AVIRIS, and ADAR to predict these forest structural attrib-
utes relative to the same ability for the single-date TM scene
(e.g., the density of stems greater than 100 cm in DBH in
Fig. 3). The distinction between class 2 and class 3 is the
relative improvement obtained with the use of multitemporal
TM. The R2 associated with the predictions of variables in
class 2 are much higher when made with multitemporal TM
relative to those made with AVIRIS or ADAR. TheR2 asso-
ciated with the predictions of variables in class 3 are similar
for all three sensors.

The average relationships observed between the remote
sensing products and all of the variables in each of the
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ADAR AVIRIS TM June
TM
multitemporal SLICER

Age 50 37 46 47 —
Basal area 39 36 25 62 84
Biomass 47 38 31 60 86
Mean DBH (ALL) 44 45 23 42 64
SD of DBH 59 49 43 58 88
Mean DBH (DCD stems) 52 55 48 57 85
Maximum height 37 45 25 64 86
Foliage biomass 53 53 46 50 86
Density of stems with DBH >100 cm 38 33 22 45 85

Cost ($/km2)a 75 na 0.13 0.78 300b

aCost is for data acquisition only. na, not available.
bCost is for comparable multiple-hit laser altimetry data.

Table 3. AdjustedR2 (%) values from stepwise multiple regressions relating remotely sensed images and forest stand attributes.

Fig. 1. Coefficient of determination (R2) for prediction of forest structural attributes.

I:\cjfr\cjfr31\cjfr-01\X00-142.vp
Monday, December 18, 2000 8:43:39 AM

Color profile: Disabled
Composite  Default screen



© 2001 NRC Canada

Lefsky et al. 83

classes (Fig. 4) are the same as those described for the indi-
vidual forest structural attributes illustrated in Fig. 3. There
is little difference in the ability of the four imaging sensors
to predict forest structural attributes in class 1. Predictions
of forest structural attributes in class 2 from the
multitemporal TM image were higher than those made from
either AVIRIS or ADAR, which were in turn higher than
those made from the single TM image. ADAR, AVIRIS, and
multitemporal images all showed an increased ability to pre-
dict the forest structural attributes in class 3 (relative to the
ability of single-date TM), but no one of these sensors per-
formed considerably better than the others.

Discussion

This study found that the lidar remote sensing data per-

formed better than other remote sensing systems in its pre-
dictions of forest structural attributes. This conclusion had
been suggested before by comparison of results obtained
with lidar (Lefsky et al. 1999a, 1999b; Means et al. 1999) to
unrelated studies that predict similar forest structural attrib-
utes using radar and optical sensors. However, the small
number of field plots (22) available to use in the SLICER
analysis, and the lower mean values of key structural attrib-
utes in those field plots (Table 1), prevents an unequivocal
assertion of the relative ability of SLICER and the other sen-
sors. This concern can be partially addressed by comparison
of field measured heights to field measured forest stand at-
tributes. The most important variable used in the SLICER
prediction of aboveground biomass is the mean height of the
lidar waveforms. In this study, the mean height of the wave-
forms has been shown to be very highly correlated with the

Fig. 2. Standard error of regression (SER%) for prediction of forest structural attributes.

ADAR AVIRIS TM June
TM
multitemporal SLICER

Age 30 48 46 45 —
Basal area 28 37 41 27 21
Biomass 30 44 47 35 24
Mean DBH (ALL) 30 35 43 36 41
SD of DBH 26 36 38 32 19
Mean DBH (DCD) 24 28 32 28 19
Maximum height 30 31 38 26 23
Foliage biomass 24 24 26 25 15
Density of stems with DBH >100 cm 55 63 70 57 51

Note: Standard error of the regressions is given as a percentage of the mean predicted value.

Table 4. Standard error of regressions (SER%) for stepwise multiple regressions relating remotely sensed images and
forest stand attributes.

I:\cjfr\cjfr31\cjfr-01\X00-142.vp
Monday, December 18, 2000 8:43:41 AM

Color profile: Disabled
Composite  Default screen



mean height of dominant and codominant trees in each plot
(R2 = 85%). Given this high correlation, we can, for our pur-
poses, consider the SLICER height measurements as nearly
identical to field height measurements and can use field
measurements of height as a surrogate for SLICER measure-
ments. In the field plot data set from this study we have 72
plots with both biomass and field-measured mean height (of
the dominant and codominant stems) measurements, and the
correlation between these two variables is 78%, as compared
with the 86% correlation between SLICER measured mean
height and biomass in the 22 SLICER plots used in this
study. Preliminary work on a larger (75 plot) data set of
field plots has determined that SLICER is still capable of
explaining >85% of the variance in aboveground biomass.
While these analyses are not definitive, it does suggest that
the ability of SLICER to predict forest structural attributes is
likely to remain high even when larger data sets are consid-
ered. Hyppa et al. (1998), in a study directly comparing a
radar altimeter (HUTSCAT) to a variety of other sensors,
concluded that the radar altimeter was superior for the pre-
diction of variables such as stand volume and basal area. In
that study, the sample size of all data sets was equal.

While lidar remote sensing has many advantages over the
other sensors considered here, it is not, by itself, practical
for large operational remote sensing projects at this time.

This is due to its high cost (approximately $300/km2) and
the fact that sensors capable of making lidar measurements
over large areas are only starting to come into use. Never-
theless, lidar is likely to play an increasingly large role in re-
gional scale remote sensing projects, as global data from the
VCL (vegetation canopy lidar; Dubayah et al. 1997) mission
become available. Although VCL data will be available for
only a sample of the earth’s surface (approximately 5%), it
has the potential to increase the accuracy of predictions of
forest structural attributes made with other remote sensing
systems through sensor fusion. In practice, one way that sen-
sor fusion can be accomplished is to replace or augment
field data with the data from the VCL sensor. Because we
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Fig. 3. R2 (%) values for predictions of forest structural variables
that are typical of the three classes of response observed in the
data, from each of the four imagery types.

Fig. 4. AverageR2 values for predictions of variables in each of
the three classes of response, from each of the four imagery
types. Error bars are SE. See text for definition of classes.

Variable SER% R2 (%)

Maximum height 26 59
SD of DBH 30 59
Mean DBH (DCD) 23 58
Basal area 36 52
Foliage biomass 30 49
Biomass 31 49
Age 42 45
No. of stems >100 cm 59 45
Mean DBH (ALL) 37 44

Table 5. Relative success of predictions of each for-
est structural variable for all remote sensing types
ranked byR2 (%).

Sensor SER% AdjustedR2 (%)

SLICER 27 82
TM multitemporal 35 54
ADAR 31 47
AVIRIS 38 43
TM June 42 34

Table 6. Relative success of sensors at predicting forest struc-
tural variables, ranked byR2 (%).

Class 1 Class 2 Class 3

Age Basal area Mean DBH (ALL)
Mean DBH (DCD) Biomass Stems >100 cm
Maximum height Foliage biomass
SD of DBH

Note: See text for explanation of classes.

Table 7. Forest structural variables by class.
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will have a large volume of data from VCL, relative to the
amount we would normally have from field sites, we can use
this data to better characterize local variations in the rela-
tionship between image characteristics and forest structural
attributes.

The results of this study suggest that the selection of an
optimal imaging remote sensing data sets (i.e., ADAR,
AVIRIS, TM) for regional-scale mapping is strongly depend-
ent on the forest structural attribute of interest. For the forest
structural attributes such as age, mean DBH (dominant and
codominant stems), maximum height, and the standard devi-
ation of DBH, we saw little difference in the predictions
made by the imaging sensors. Within this context, Landsat
TM has a clear advantage over the other sensors in terms of
cost, storage requirements, spatial availability, and the exis-
tence of a substantial literature of methods for geometric
rectification, radiometric correction, and analysis for extract-
ing forest structural attributes. Furthermore, the advantages
of this sensor have increased with the launch of Landsat 7,
which carries the enhanced thematic mapper + sensor (see
below).

For the forest structural attributes such as basal area, bio-
mass, and foliage biomass, substantial increases in predictive
power were obtained using the multitemporal Landsat TM
data set in comparison with the other imaging sensors. Both
ADAR and AVIRIS showed more modest improvements
over single-date TM. We believe that multitemporal TM rep-
resents the best approach for measuring these attributes, pri-
marily for the same reason that TM is a sensor of choice for
other attributes (cost, storage requirements, spatial availabil-
ity, and availability of literature). While multitemporal data
will cost more and have larger storage requirements than
single-data TM, this is mitigated for two reasons. First, now
that Landsat 7 has been launched, the distribution of TM is
being handled by the EROS data center, not by a private
firm, and its cost is set at the cost of distribution, currently
about $600 per scene. With the price of TM falling by over
80%, spatially extensive multitemporal data sets will be cor-
respondingly more affordable. Secondly, whereas we used
six TM scenes in the multitemporal data set for this study,
follow-up analysis suggests that substantial improvements in
predictive power can be achieved with only two scenes. Ta-
ble 8 and Fig. 5 document the results of this analysis for one
of the variables in class 2, basal area. As illustrated in the
figures and quantified in the table, the majority of the im-
provement in predictive power occurs with the addition of
the second image. March and July were selected as the opti-
mal months for the 2-month analysis by analyzing all possi-
ble combinations of dates. That these two dates achieve the
best results is probably due to the combination of low and
high sun angles obtained in these two images, which allows
more precise estimation of the degree of shadowing in the

canopy, which is closely related to the height and variability
of the canopy. As a consequence of moving from a six-date
analysis to a two-date analysis, the cost of the multitemporal
analysis is reduced by a factor of three.

ADAR, AVIRIS, and multitemporal TM all showed a
moderate level of improvement for the prediction of the for-
est stand attributes in class 3 (Mean DBH of all stems, and
the density of stems >100 cm in DBH), relative to the
single-date TM. However, there was no clear difference be-
tween the performance of these three sensors (Fig. 4), so for
the reasons of cost and efficiency cited above, multitemporal
analysis of TM is preferable over ADAR or AVIRIS.

Conclusions

Lidar appears to offer substantial improvements over the
other sensors considered in the accuracy of its predictions of
forest structural attributes. The availability, spatial coverage,
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AdjustedR2 (%) SER%

Single date (June) 25 41
Two dates (March, July) 50 32
Multitemporal (all six dates) 62 27

Table 8. R2 (%) and SER% for models predicting basal area
from one, two, and six TM Images.

Fig. 5. Prediction of basal area from single-date (June) TM
(R2 = 25%), two dates (March, July) of TM (R2 = 50%), and six
dates of TM (R2 = 62%). See text for dates of surveys.
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and cost of this data will limit its immediate applicability;
however, data from NASA’s VCL sensor has the potential to
increase the accuracy of predictions of forest structural at-
tributes through sensor fusion with data from imaging sen-
sors. Single-date Landsat TM is comparable with ADAR,
AVIRIS, and multitemporal TM in its ability predict forest
structural attributes such as stand age, mean DBH of domi-
nant and codominant stems, maximum height, and the stan-
dard deviation of DBH. For these attributes, the continued
use of TM is recommended. Multitemporal TM is superior
to ADAR, AVIRIS, and single-date TM is its ability to pre-
dict forest structural attributes like basal area, biomass, and
foliage biomass. While the results in this report were ob-
tained using a six-date multitemporal image, substantial in-
creases in the quality of predictions of basal area were found
when using only two images over single-date TM. We rec-
ommend that research on the use of multitemporal images be
considered for this class of attributes. ADAR and AVIRIS,
which incorporate (respectively) high spatial resolution and
hyperspectral capabilities, did not appear to be consistently
superior for any set of forest structural attributes. These two
sensors did offer some improvement in the quality of predic-
tions over single-date TM for some of the forest structural
attributes. However, the limited spatial distribution and
availability, high cost, and relatively complex processing re-
quirements of these data sets indicate that multitemporal TM
should be investigated before either of them.
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